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ABSTRACT

An aeroelastic analysis is presented which accounts
for the effect of steady aerodynamic loading on the
aeroelastic stability of a cascade of compressor blades.
The aeroelastic model is a two degree-of-freedom model

having bending and torsional displace-ments. A linear-
ized unsteady potential flow theory is used to determine
the unsteady aerodynamic response coefficients for the
aeroelastic analysis. The steady aerodynamic loading

was caused by the addition of (1) airfoil thickness and
camber and (2) steady flow incidence. The importance of
steady loading on the airfoil unsteady pressure distri-
bution is demonstrated. Additionally, the effect of the

steady loading on the tuned flutter behavior and flutter
boundaries indicates that neglecting either airfoil
thickness, camber or incidence could result in noncon-
servative estimates of flutter behavior.

NOMENCLATURE
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fluid steady flow incidence angle, deg,

also

spring stiffness for bending

spring stiffness for torsion

reduced frequency based on semichord

unsteady aerodynamic lift force per unit

span

unsteady aerodynamic lift coefficient due
to blade bending motion

unsteady aerodynamic lift coefficient due
to blade torsional motion

unsteady aerodynamic moment per unit span
about elastic axis

unsteady aerodynamic moment coefficient
due to blade bending motion

fluid inlet relative Mach number

unsteady aerodynamic moment coefficient
due to torsional motion

blade mass per unit span

number of blades in rotor

steady static pressure

first harmonic unsteady pressure



P_ steady static pressure far upstream

blade section radius of gyration about
elastic axis

S
O_

- xmb
¢t

static mass moment coupling term

root locus eigenvalue (Eq. (6)), also
cascade gap

time

X
O[

rotor blade velocity at leading edge

fluid absolute velocity at leading edge

fluid inlet relative velocity at leading
edge

of[set of airfoil elastic axis from cen-

ter of gravity nondimensionalized by
blade semichord

ct blade torsional displacement about elas-
tic axis

cascade stagger angle measured from axial
direction

,rob 2

M

p

(:r

%= _h

blade/fluid mass ratio

airfoil camber angle, deg

real portion of complex eigenvalue
(Eq. (6)}

imaginary portion of complex eigenvalue
(Eq. (6))

fluid mass density

interblade phase angle, deg

oscillation frequency, rad/sec, also com-

plex eigenvalue

natural frequency of blade bending motion

natural frequency of blade torsional
motion

INTRODUCTION

It is well known that airfoil geometry and steady
loading has a strong influence on the unsteady aerody-

namic response of cascades. So as the design of modern

turbomachinery becomes more stringent to meet specific
fatigue and life requirements, the design/analysis for
aeroelastic problems will also become more important.
It is popularly believed that the modeling of shaped
airfoils as unloaded flat plates results in conserva-
tive estimates of flutter prediction. The development
of an aeroelastic model which accounts for blade thick-

ness, camber, and flow incidence effects is required
to determine if this belief is correct and to identify
the conditions where it may fail.

J

The axial-flow turbomachinery blade designer

often attempts to model dynamic aeroelastic instabil-
ities through the use of simplified structural and
aerodynamic models. Blade-row flutter analyses (Kaza
and Kielb, 1982, Kielb and Kaza, 1983, and Srinivasan
and Fabunmi, 1975} often employ flat plate, small-

disturbance theory (Smith, 1972, and Adamczyk and
Goldsteia, 1978) to model the unsteady aerodynamic
forces acting on vibrating biades. These small-
disturbance theories do not account for the effect of

airfoil thickness, camber and flow incidence on the

unsteady aerodynamic/response of the cascade.
Accounting for airfoil shape and steady loading

requires that a more accurate aerodynamic analysis be

done. Verdon and Casper (1982, 1984} have developed an
unsteady aerodynamic theory based on a linearization of
the unsteady full potential equation. Their method
accounts for the effects of blade geometry (i.e.,
thickness, camber} and steady loading {i.e., flow inci-

dence} on the unsteady potential field within the cas-
cade. Results presented by Yerdon (1987} imply that
the unsteady aerodynamic response of the cascade is
strongly dependent upon the steady flow field which the
blade vibrates within. Art alternative method for solv-

ing the same equation set on practical airfoil geome-
tries has been reported by Whitehead (1982). This
technique solves the linearized unsteady potential
equation discretized using the finite element method.

The purpose of the current work is to present an
aeroelastic analysis scheme which utilizes an unsteady
aerodynamic formulation to account for the mentioned

steady aerodynamic loading effect on the cascade
unsteady aerodynamic behavior. The objective is to
study the effect of airfoil shape and steady aerody-

namic loading on the tuned flutter characteristics of
the cascade. An advantage of this method is that the
use of the linearized aerodynamic theory permits the
effect of variations in aerodynamic and aeroelastic
conditions on fquttercharacteristics to be examined

at reasonable computational cost.
The approach utilizes a two degree-of-freedom

(DOF) structural dynamic model of the blade and two-

dimensional linearized unsteady potential theory to
model the fluid within the cascade. This analysis is
presented for a cascade of blades which are repre-

sentative of compressor blading. The effect of changes
in airfoil shape and steady flow incidence are studied
to assess their associated impact on the cascade flut-
ter stability.

ANALYTICAL DEVELOP_{ENT

Aeroelastic Formulation

The model of the turbomachinery blading in this
study follows a "typical section" approach wherein the

blade is modeled as a rigid airfoil having two DOF,
This model assumes the airfoil motion at a representa-

tive spanwise location is made up of a bending motion
(h} normal to the blade chord and a torsional motion
(a} about the elastic axis of the airfoil. Positive
directions for these DOF and the resulting forces are

indicated in Fig. l. A full development of the follow-
ing equations of motion can be found in Bendikson and
Friedman (1980).

The dynamic equations of motion for this two DOF
blade model are shown below.

(1)
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Figure 1 .--Typical section airfoil degrees-of-freedom.

The airfoil section mass and moment of inertia are

m and l, and lumped springs of stiffness Kh and
act at the elastic axis. Inertial coupling may be
present due to an offset in the elastic axis from the

airfoil center of gravity, and is modeled as a static
mass unbalance S=. The forcing term on the right-hand
side of Eq. (1) represents the unsteady aerodynamic
forces and moments present during airfoil oscillation.

The vibration of the blade is assumed to occur as

small-amplitude and simple harmonic in time, such that

the blade displacement vector is

- e (21
¢O

The motion-dependent unsteady aerodynamic loads
are modeled as first-order harmonic in time as shown in

Eq. (3).

L = pW2C(Lh

M - pW2c2(Mh

h° L = _e i_t
_-* _o)

h° M _ _e i_t

_-+ =o)

(3)

The unsteady aerodynamic coefficients Lh, La, Mh, '_z
are complex quantities which relate the aerodynamic
forces and their phase to the corresponding driving
motion. For a fixed cascade geometry, these coeffi-
cients are strongly dependent upon the cascade oper-

ating parameters, relative Mach number MR, incidence
angle i, and the aeroelastic parameters, reduced fre-
quency k and interblade phase angle g.

Substitution of Eqs. (2) and (3) into Eq. (1)
results in an aeroelastie equation which describes the
blade/fluid system dynamics. This equation is nondi-
mensionalized by using the nondimensional parameters
S, xa, rG, and k The bending [}OF h is also non-
dimensionalized by the blade chord c and the fre-
quency is normalized by the torsional natural frequency

_. The nondimensional flutter equation which results
is included below as Eq. (4}.
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This equation indicates that when using a fre-
quency domain (harmonic) approximation for the blade
motion and aerodynamic forces, the motion-dependent

forces appear as an "apparent inertia" term in the
equations of motion.

The compressor rotor within this work is assumed
to be represented by an unwrapped infinite two-

dimensional cascade of airfoils. The cascade for this

analysis is assumed to vibrate as a "tuned" rotor. A
tuned rotor consists of identical blades, with each

blade having the same in-vacuum natural frequencies
and mode shapes. Such a rotor, when vibrating within

a flowing fluid, will have all the blades experiencing
the same amplitude of motion, with a constant phase
angle between neighboring blades. These phase angles
are referred to as "interblade phase angles" and they

describe a travelling wave around the periphery of the
rotor.

The interblade phase angles are limited to a dis-
crete set of angles as described by Lane (1956) and
shown in Eq. (5).

2_(i - Z] for i - z ..... _ (5)
oj - N

This equation implies that a rotor having N
blades may vibrate with any one of N possible inter-
blade phase angle modes.

AERODYN&MIC FORMULATION

The aerodynamic forces present on the blade are

calculated using the two-dimensional linearized
unsteady potential approach of Yerdon and Caspar
(1984}. The unsteady potential flow within the cascade
is assumed to be a first-order harmonic perturbation
about the nonuniform steady full potential flow. This
expansion involves products of both the steady poten-
tial and the first-order harmonic potential. Thus,

the variations in the steady potential field caused by
airfoil shape and flow incidence are coupled to the
unsteady flow problem through the governing unsteady
field equations.

The approach requires solution of the two-

dimensional steady-state full potential equation on a
blade-to-blade computational mesh. The method
described by Caspar et al. (1983) is used to calculate
the steady full potential flow within the blade pas-
sages. The unsteady potential flow is then calculated
using this steady full potential flow as the mean flow
for the cascade.



A complete discussion of this method including
some example results may be found in Verdon and Caspar
(1984). A comparison of this linearized unsteady
potential method with experimental results from two-
dimensional oscillating cascades has been reported in
Verdon and Usab (1986). A comparison of the unsteady

pressures due to torsional vibration of a large-scale
compressor rotor has also been reported in Hardin
et al. (1087) showing excellent agreement.

FLUTTER SOLUTION

Flutter occurs as a dynamic instability in which
the blade motion becomes self-excited by extracting
energy from the flowing fluid. This condition may
develop when the aerodynamic forces become in-phase
with and eventually lead the blade motion. If no other
dissipation mechanism exists for the self excitation
(e.g., structural damping), the motion will become
unstable.

The determination of aeroelastic stability

requires the solution of Eq. (4). This equation repre-
sents a complex eigenvalue problem which is solved for

the eigenvalues _l, w2" Solution of this second-order
equation is accomplished by determining the roots of
the quadratic characteristic equation.

The resulting eigenvalues will be complex and they
are converted to root locus form by the equation

S = iI_---_- _ • iv
(6)

The real part of this eigenvalue (_) represents a
measure of the aerodynamic damping ratio, and the imag-
inary part of this eigenvalue (v) represents the damped
natural frequency normalized by the torsional natural

frequency. The system will be in a flutter condition
when the real part of either eigenvalue (_1 or _2)
becomes equal to or greater than zero. For a tuned

rotor, the eigenvalue problem of Eq. (4) is solved N
times, for each of the corresponding interblade phase
angles of Eq. (5).

The aerodynamic forces are dependent upon several
aeroelastic parameters, the most important of which are
the reduced frequency k relative Mach number MR , and
cascade interblade phase'angle o. Therefore, an iter-

ative eigensolution must be used to determine the con-
dition when flutter will occur, i.e., when p = O. The
flutter iteration for a specified blade geometry and
cascade configuration involves prescribing either a
Mach number or a reduced frequency, and varying the

other parameter while calculating all interblade phase

angles for the rotor,
The present method involved specifying a Mach num-

ber where a flutter point is desired, and iterating on

the reduced frequency until an unstable eigenvalue was
obtained for one of the phase angles of the full rotor.

An initial guess for the flutter reduced frequency is
made and the eigenvalues for all interblade phase

angles are calculated. The most unstable eigenvalue
(eigenvalue with largest _) is used to continue in a
Newton iteration until convergence.

The algorithm is expressed as

k(n+l) kF(n) f_kF_(n) (n) (7)

where n signifies the iteration level, k F is the
flutter reduced frequency and p is the real portion
of the eigenvalue for the most unstable interblade

phase angle mode. It has been found that this proce-
dure usually converges within from 4 to 6 iterations.

APPLICATION OF METHOD

Compressor Cascade

The application of this aeroelastic model is pre-
sented for a cascade of blades representative of cur-
rent compressor blade designs. The airfoil shape used
for this work is a NACA 0006 series airfoil thickness

distribution applied along a circular arc mean camber
line. The camber was varied by changing the height of
the camber line. The camber angle is represented as c
which is the difference in the inlet metal and exit

metal angles at the airfoil leading and trailing edges.
An illustration of the compressor cascade denoting the

Camber ,_ _"

Figure 2.--Cascade geometry and nomenclature.

cascade nomenclature is included as Fig. 2. The cas-
cade parameters chosen to represent this compressor
cascade are listed in Table I..

The airfoil inertial properties were determined
using numerical integration to calculate the airfoil
center of gravity, moment of inertia, and radius of
gyration. A number of airfoils were studied in this
work, ranging in camber angles from 0 ° to 30 ° . The



TABLE I. - CASCADE DESCRIPTION

Airfoil thickness distribution ..... NACA 0006

Cascade stagger angle, _, deg ......... 45
Cascade solidity, c/s ............ 1.0
Blade-fluid mass ratio, p .......... 330

Frequency ratio, Oh/_ ............ 0.30
Radius of gyration, r G ........... Varied
E.A. - C.G. offset, x_x ........... Varied
Number of blades, N .............. 12
Elastic axis location .......... 0.5,0.0

TABLE II. - CAMBERED AIRFOIL INERTIAL PROPERTIES

Camber
angle,

deg

0
5

10

15
20
25
30

Center of gravity r G

x y

0.4180 0.0000
.4180 .0083
.4179 .0165

.4179 .0246

.4178 .0331

.4177 .0415

.4175 .0498

0.4953
.4955
.4962
.4981

.5016

.5045

.5088

xct

-0.1640
-.1640
-.1642
-.1642
-.1644

-.1646
-.1652

elastic axis for all the airfoils was chosen to be at

midchord. The airfoil properties for all of the camber
angles studied are included in Table II.

The aeroelastie analyses were conducted to deter-
mine the effect of (1} airfoil shape and (2} steady
flow incidence on the flutter behavior of a tuned cas-

cade. Flutter was determined by solving the eigenvalue
problem of Eq. (4) which not only includes aerodynamic
properties of the system, but also the structural
dynamic properties. This method of analysis was chosen
because it is similar to the type of analysis that a
designer may use during initial component design analy-
sis. For all cases, the inlet relative Mach number was
limited to subsonic values such that no shocks would

appear within the cascade. This'was done so that the
effect of variations in the mean potential field due to
blade shape and incidence could be studied, where there
were no flow discontinuities occurring in the potential
field.

AERODYN&_IC ANALYSIS

The aerodynamic analysis method employed in this
work requires that two-dimensional computational meshes
be used to perform the finite-difference solution of
the governing equations. The current method uses a
blade-to-blade H-type computational mesh to capture the

global flow behavior over a single blade passage. A
local C-type grid is then required to more accurately
resolve the flows around the leading edge region of the
blade. An example of these global and local computa-
tional meshes is included as Fig. 3 for a cascade hav-

ing 20 ° camber angle. A dependence upon local mesh
discretization was encountered during the analysis, so

the leading edge local mesh was refined until succes-
sive flow solutions indicated a convergence to a steady
surface pressure distribution about the blade. The
meshes used for all the analyses were of size 75x30 for

the global mesh and 70xll for the local mesh.
The steady full potential flow in the cascade was

computed using the method described previously. Cal-
culations were performed for Mach numbers up to
_R = 0.7. The calculated static pressure coefficient

Cp is shown in Fig. 4 for an inlet Mach number of 0.60

Figure 3.--Unsteady aerodynamic computational meshes.
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Figure 4.--Steady surface pressure distributions (NACA
0006 airfoils, M = 0.60, i = 0°).

for NACA 0006 airfoils having camber angles of 0 °, tO°,
and 20*. Calculations were also performed for a NACA
0006 with I0° camber cascade at incidence angles of
-4° , 0°, and 4° as shown on Fig. 5. This figure shows
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Figure 5.--Steady surface pressure distributions (NACA
0006 airfoils, M = 0.60, _ = 0°).
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part (NACA 0006 airfoils, M = 0.60, i = 0 °, (_= 60°).

the off-design effects such as the large expansion near
the leading edge for the 4 ° incidence case and the
underexpansion which occurs for the -4 ° case. These

conditions may be encountered during partial speed
operation of the compressor.

The unsteady pressures due to torsional motion of
the airfoil about the elastic axis were calculated for

airfoils having camber angles of 0 °, 10 °, and 20 ° . The
inlet Mach number was 0.60 and the incidence angle for

all cases was 0 °. The reduced frequency was k = 0.22
and the interblade phase angle was a - 60 ° . Plots

showing the unsteady surface pressure coefficient dif-
ference across the airfoil are shown in Fig. 6 (real

part) and Fig. 7 (imaginary part). The results from a
flat plate airfoil modeled using the same method are
also included for reference. The unsteady pressure
coefficient is normalized by the magnitude of the tor-
sional motion.

It is important to observe that two basic effects
are present for this unsteady flow problem. There is
an influence due to the dependence of the unsteady
potential equation on the underlying steady potential
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Figure 7.--Unsteady surface pressure distributions -
imaginary part (NACA 0006 airfoils, M = 0.60, i = 0%
o" = 60°).
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field. In addition, there is also the effect of

changes in the airfoil surface boundary condition for
airfoils of different camber. A determination of which
of these two effect is more important is not obvious
based on these results.

Therefore, an analysis was conducted to study the
effect of flow incidence (changing steady potential
field alone) for the same cambered airfoil under the
same operating conditions. Results showing the
unsteady pressure difference caused by torsional motion
for a 10 ° cambered airfoil at three different incidence

angles are included on Figs. 8 and 9. As before, the
reduced frequency was k = 0.22 and the interblade
phase angle was 60 ° . Both positive and negative inci-
dence angles are included to simulate off-design oper-
ating conditions. These unsteady pressure results
resemble those presented for camber angle changes,
although the imaginary pressures seem to depend more
strongly upon incidence, particularly in the region
from midchord aft to the trailing edge.
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Figure &--Unsteady surface pressure distributions -
imaginary part (NACA 0006 airfoils, M = 0.60, _ = 10 °,
a = 60°).

AEROELASTIC ANALYSIS

The dependence of unsteady surface pressures on
the steady aerodynamic loading level has been studied

in the previous section. In the current section, an
investigation of the same effect on the overall aero-
elastic stability is presented. The flutter solution
for the cascades was determined by solving Eq. (4) for
a range of camber angles and operating Mach numbers.
The solution of this tuned aeroelastic eigenvalue prob-
lem is required for all interblade phase angles which
occur for the rotor, in this case N = 12. The result-

ing set of complex eigenvalues form the locus of roots,
where one root will become most unstable.

This root locus has been calculated for the exam-

ple rotor operating at a relative Mach number of 0.60
and a reduced frequency of k = 0.22. The four cases
analyzed consisted of a flat plate airfoil, and NACA
0006 airfoils having 0 °, 10 °, and 20 ° camber. The root
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Figure 10.--Tuned rotor root locus showing effect of
airfoil camber (torsion mode, M = 0.60, i = 0°, k =
0.22).

.96
-.12 0 .02

locus shown on Fig. tO shows the four loci correspond-
ing to these cascades, where the eigenvalues corre-
sponding to the torsional DOF are shown, as this was
the most unstable mode of vibration. The modes corre-

sponding to bending motion of the blade were always
more stable than those corresponding to torsional
motion of the blade. The numbers on the plot represent
the interblade phase angle modes for the tuned rotor.

These calculations show a large difference between the

fiat plate airfoil and the 0 ° camber airfoil rotors,
where the only difference is due to the a_rfoil thick-
ness distribution. The rotor of uncamhered airfoils is

the most unstable, with increasing airfoil camber caus-
ing the rotor to become more stable.

The above result implies that the modeling of a

low cambered compressor under the assumption that a
flat plate aerodynamic representation is valid may not
always be as conservative as is often assumed. Addi-
tionally, the effect of increasing airfoil camber
appears to cause the rotor to become more stable. In

fact, these results imply that the flat plate results
always underpredict the flutter condition when compared

to the results when airfoil shape and flow incidence
are considered.

A similar calculation was performed to determine
the root locus for the NACA 0006 10 ° camber airfoil at

incidence angles of -4 °, 0 °, and 4 ° . As before, the
relative Mach number was 0.6 and the reduced frequency
k = 0,22. The root loci are shown on Fig. 11 for the
flat plate cascade and the 10 ° camber airfoil at nega-
tive and positive incidence levels. These calculations

were performed to determine the effect of off-design
conditions due to inlet flow angle variations on the
rotor stability. These results indicate that positive
flow incidence makes the rotor become more stable when
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compared to zero incidence. Likewise, negative inci-
dence causes a strong destabilization of the rotor, as

o24

shown by the large spread of the -4 ° incidence eigen-
values relative to the zero incidence case. Obviously -_
none of these characteristics would be identified using

flat plate small-disturbance aerodynamic theories. _ .22
:g::

_m
I.L

The aeroelastic stability analysis for the rotor
was studied in order to determine the effect of airfoil
camber and flow incidence on the flutter behavior. The

iterative flutter search method was implemented in
order to perform the flutter analysis more efficiently.

The effect of parametric changes in airfoil camber
angle on the flutter boundary for a tuned rotor opera-
ting at inlet Mach numbers of 0.5 to 0.7 was studied.
Figure 12 shows the flutter boundaries for these

operating conditions where the fluttering mode was a
torsional mode in all cases. Note the apparent
linearity of the flutter reduced frequency with
increasing airfoil camber. The flutter reduced fre-

quencies for the flat plate are also shown on this
figure as symbols. Note that the flat plate results
are constant with changes in camber angle.

The effect of variations in the mean flow inci-

dence angle on the flutter characteristics was also
determined. The flutter boundaries for the tuned

rotor operating at a Mach number of 0.6 is shown on
Fig. 13 as a function of positive and negative mean
flow incidence angles. This figure includes the
results for the NACA 0006 airfoils having camber angles
of 0 °, 10 ° and 20 °. Additionally, the flat plate flut-
ter point is also shown on this figure as a point.
Usually, the designer considers a lower flutter reduced
frequency as better, because it permits higher relative
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Figure 13.--Effect of mean flow incidence on flutter
boundary (NACA airfoils, torsion mode, M = 0.60).

fluid velocities. This figure indicates that operating
at off-design negative incidence angles (engine decel-
eration, approaching choking) can have an undesirable
effect on the rotor stability. These calculations were

performed using inviscid potential flow theory, and the
authors realize the limitations of inviscid flow models

when applied to flows at high incidence angles.

COMPUTER TIME

The use of the linearized unsteady aerodynamic

theory presents a significant advantage over other
recent unsteady CFD methods because of its rapid compu-
tational time. The current implementation computes one
set of unsteady aerodynamic coefficients (i.e., Lh and

Mh) in about 8 CPU seconds on the NASA Lewis Cray X-YP
computer. The calculation of a full tuned rotor root



locusrequiredapproximately 180 CPU seconds. The
iterative flutter solution for one Mach number and

incidence angle required approximately 1600 CPU sec-
onds. These figures represent a cost advantage of more

than an order of magnitude reduction in CPU time when
compared to other recently proposed CFD methods.

CONCLUSIONS

A numerical study of the influence of steady aero-
dynamic loading on the flutter behavior of a tuned
compressor rotor was performed. The results of this
analysis imply the following:

1. Airfoil camber and thickness has a strong
influence on the unsteady surface pressures induced by
airfoil oscillation.

2. The effect of steady flow incidence on the

unsteady surface pressures can be as strong or stronger
than the effect of airfoil camber alone.

3. The impact of steady aerodynamic loading caused
by airfoil camber, thickness and flow incidence, is

significant with respect to rotor flutter calculations
when compared to a traditional flat-plate aerodynamic
analysis.

4. Unloaded flat plate results indicated a strong
difference from the analyses which accounted for air-

foil shape, implying that the flat plate assumption
wouid not properly predict the occurrence of flutter.

5. The presented results indicate that the effect
of airfoil camber angle and steady flow incidence shows
a fairly linear behavior with respect to flutter bound-

aries within the range of parameters which may be con-
sidered during the design process.

The intent of this work was not to present a com-

plete flutter analysis for a specific class of turbo-
machinery. The objective was to demonstrate the effect
of some practical design parameters on the overall
aeroelastic stability of rotors. The continued devel-
opment of state-of-the-art unsteady aerodynamic models

for turbomachinery flows is making the task of nero-
elastic analysis of real-world blading more practical.
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